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Abstract

The Third Modeling Workshop focusing on bioprocess modeling was held in Kenil-

worth, NJ in May 2019. A summary of these Workshop proceedings is captured in

this manuscript. Modeling is an active area of research within the biotechnology

community, and there is a critical need to assess the current state and opportunities

for continued investment to realize the full potential of models, including resource

and time savings. Beyond individual presentations and topics of novel interest, a
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substantial portion of the Workshop was devoted toward group discussions of

current states and future directions in modeling fields. All scales of modeling, from

biophysical models at the molecular level and up through large scale facility and

plant modeling, were considered in these discussions and are summarized in the

manuscript. Model life cycle management from model development to im-

plementation and sustainment are also considered for different stages of clinical

development and commercial production. The manuscript provides a comprehensive

overview of bioprocess modeling while suggesting an ideal future state with stan-

dardized approaches aligned across the industry.

K E YWORD S

computational fluid dynamics, mechanistic modeling, molecular modeling, plant simulation

1 | INTRODUCTION

Modeling is an active area of research within the biotechnology

community. There is a critical need to assess the current state and

opportunities for continued investment to realize the full potential of

models, including resource and time savings. The Modeling Work-

shops were initially established as a grass roots movement to share

knowledge and experience with mathematical modeling in the in-

dustry and to enhance its implementation. Over many conferences

and discussions, there was one unifying theme that has been clearly

identified. What problems are we trying to solve? This question is

juxtaposed with the ultimate challenge to mature modeling to the

point where it could potentially replace experimentation.

Hence, the goal of the Third Modeling Workshop, held in May 7

to 9, 2019, was to highlight and assess the current state, challenges,

solutions, and opportunities for achieving a future state where a

combination of modeling tools can be utilized as a complete simu-

lated plant/digital twin. Sessions were specifically focused on key

modeling areas currently in development including molecular mod-

eling, mechanistic modeling, computational fluid dynamics (CFD), and

plant simulations. An open challenge session was also included to

assist in identification of nascent challenges and tools that are highly

interconnected and could be developed to advance the various fields

of modeling. One key observation was that models are inter-

connected (e.g., use of mixed mode isotherms for multiple

applications—mechanistic, biophysics, and even plant simulation).

Consistent with the evolution of the modeling field, the event has

now been converted to a Recovery of Biological Products Workshop

and will be distributed to a broader audience for future meetings.

2 | OVERVIEW OF WORKSHOP OUTCOME

The potential exists to utilize and combine a range of modeling tools

from molecular design to plant simulation to prospectively evaluate

the impact of new technologies, process optimizations, and process

changes (see also Figure 1) for a range of products including

recombinant proteins and polypeptides. Models can be used to cap-

ture these process aspects and insights both quantitatively (e.g.,

mechanistic models for chromatography) and qualitatively/direc-

tionally (e.g., feasibility of utilizing a particular ligand for separation).

One key observation is that models transcend scales of proces-

sing (see Figure 2 below). The scale, complexity, potential accuracy,

and perceived value of the different bioprocess modeling approaches

for design and optimization are shown schematically. Statistical/de-

sign of experiments (DOE) based approaches do not require and do

not provide mechanistic understanding and can be safely used only to

interpolate within experimental conditions (Staby, Ahuja, & Rathore,

2017). At the smallest scale, molecular level models have the po-

tential to provide the greatest possible understanding of molecular

interactions as well as true predictions. At the microscopic scale,

mechanistic models describe all aspects of the process based on

verified physical chemical laws, require in‐depth process under-

standing, and can be used to extrapolate beyond experimental ran-

ges. Hybrid models are intermediate between fully empirical and

truly mechanistic approaches. They describe certain well‐understood
aspects of the process using physical chemical laws and other, less

clearly understood aspects through statistical correlations of em-

pirical data. While a decade ago the perceived practical value of

modeling for bioprocess design and optimization centered around

DOE‐based approaches, recent advances have shifted the value

curve upwards toward mechanistic approaches and principal com-

ponent analysis (PCA)/partial least squares (PLS) statistical models or

hybrid models (combination of empirical and mechanistic). The

Workshop consensus is that, today, hybrid modeling approaches are

likely most beneficial in bioprocessing. These approaches combine

advances in high‐throughput measurements with fundamental un-

derstanding of the relevant physical chemical phenomena along with

efficient computational technologies. Although these models were

developed based on proteins, the applications and approaches can be

applied to new biological formats (e.g., conjugates or virus‐like par-

ticles; Ladd Effio et al., 2016).

A future state may exist where one can leverage databases and

predictive models to perform most development efforts in silico. An
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initial Workshop mapping of this functionality to the development

state and by modeling activity is presented in Figure 1.

A key element for industry to broadly embark on the future‐state
modeling approach is the existence of a proper business case for

implementation. Although significant investments may be required,

including development of more refined, efficient, and quantitative

algorithms as well as new tools, utilization of the existing tools in a

phase appropriate manner can result in significant resource and time

savings; for example, postponement or circumvention of factory in-

vestments (Hansen, 2017) and 10+‐fold increase in productivity as

presented at the Workshop. Scale of capital investment avoidance

has significant financial return (10 or 100 s of millions of US dollars).

Ideally, models would be fully quantitative and could potentially re-

place experimentation if that aspirational goal were achieved. Al-

ready today models can provide directional guidance to support

development (e.g., focus research on areas with higher probability of

success) and address regulatory agency questions that cannot be

readily explored experimentally.

The impact and return on investment for a model depends on the

scope and type of application. For example, empirical models that

employ data and statistical approaches for a specific project or

F IGURE 1 Future state in silico chemistry, manufacturing, and control (Prospective and predictive artificial intelligence) [Color figure can be
viewed at wileyonlinelibrary.com]
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F IGURE 2 Evolution of process models (tradeoffs of applicability
and prediction; G. Carta). The scale, complexity, potential accuracy,
and perceived value of the different bioprocess modeling approaches
for design and optimization are shown schematically [Color figure

can be viewed at wileyonlinelibrary.com]

3988 | ROUSH ET AL.

 10970290, 2020, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bit.27520 by R

oyal D
anish L

ibrary, W
iley O

nline L
ibrary on [24/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


facility will generate value in a linear fashion. Mechanistic models

developed on first principles (e.g., chromatographic governing equa-

tions, cell growth and metabolism, and mass transfer) can require

more initial investments and more time to develop, yet lead to ex-

ponential value creation, since they have the potential to be pre-

dictive. For example, a combination of models (CFD, mechanistic

chromatography modeling, molecular biophysics, and plant simula-

tion) could be performed prospectively to evaluate the impact of

proposed equipment or facility changes on productivity or product

quality (Figure 1). If the results of these models indicate no impact on

critical quality attributes (CQA) then the results of these models

could support a decision to implement the changes to equipment,

facility, or operating conditions without the cumbersome need to

qualify them under protocol.

One of the challenges in model development is mapping the type

of model to the specific application. As mentioned in the previous

section, simple statistical models can be quite beneficial to support

specific applications, projects, or facilities. However, significant value

is gained via development of more generalized models, either em-

pirical or predictive. The timing for development and uses of a model

may also be dependent on the type of application. For example, one

could envision creating a DOE and interrogating process options with

a hybrid approach combining modeling and limited number of ex-

periments. This approach could be employed either with directional

models to identify key parameters (early stage) or more quantitative

models (late stage) depending on the application.

One key area of consensus from the Workshop is that a sys-

tematic approach to model development, maintenance, and replace-

ment is required to maximize the return on investment. The key

areas of the model lifecycle are captured in Figure 3 (Rolandi, 2019).

During the development stage, tools may be directional in nature and

used to guide research. Once the tools are deployed and additional

data are obtained as well as more clarity obtained on user require-

ments, the tools are refined. One of the challenges often encountered

in the deployment space is the limitation of the amount and quality of

data to validate or qualify the tools. This is particularly critical in

some areas of modeling such as computational biophysics where

access to high quality and diverse data sets is limited. A key area for

investment that was identified at the Workshop is the need to per-

form prospective experiments to validate tools and models with a

standard set of conditions. One potential solution proposed would be

the formation of consortia to execute these experiments and criti-

cally evaluate the performance of the models during the validation

expectations (qualitative/directional for early stage and quantitative

for late/commercial stage). Translation of this concept to reality has

been initiated via the Recovery of Biological Conferences Highland

Games (Coffman et al., 2020).

In the following sections, detailed discussions and results of the

various Workshop themes are summarized and divided into four

sessions: molecular modeling, mechanistic modeling, CFD, and plant

simulation, and subsequently the more detailed outcome of the Open

Challenge and Future State sessions of modeling are provided. We

hope that these discussions will pave the way to achieve the sug-

gested future state for modeling.

2.1 | Molecular modeling

A new but important topic at the Workshop was molecular modeling.

Elements of consideration for use and general status of the potential

for the field of Biophysics are presented in Figure 1 and discussed in

more detail below. Molecular models can be viewed as a mechanistic

model at a specific scale built on first principles. A typical approach

for therapeutic antibody discovery involved the humanization of a

2 3

5 4

Modeling 
Lifecycle

a. User requirements
b. Asset development
c. Asset documentation
d. Asset release

Deployment

a. Model documentation
b. Model qualification
c. Business process documentation
d. Computer systems validation

Qualification

a. Formulation
b. Identification

c. Application
d. Assessment

Development

a. Utilization
b. Support

c. Advocating
d. Embedding

Sustainment

1

a. Value & resources
b. Problem statement &

proposed solution
c. Literature review
d. Data requirements

Inception

F IGURE 3 Summary of modeling lifecyle
(adapted from Rolandi, 2019) [Color figure can
be viewed at wileyonlinelibrary.com]
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potent murine antibody against a specific antigen or optimization of a

lead candidate to improve potency or reduce liabilities. The primary

objective at this stage in the discovery process is to improve affinity

to a specific antigen and potency. Using sequence alignment and

structural information, site specific mutations can be introduced to

generate a clinically relevant molecule with the desired therapeutic

properties. Yet, the therapeutic potency of an antibody does not

directly translate into an ideal process development and manu-

facturing conditions.

Early development assays provide relevant information during

discovery but are limited in predicting the behavior of monoclonal

antibodies (mAbs) under relevant process development and manu-

facturing conditions. Transient transfections typically do not provide

the yield and glycosylation profiles as a stable pool cell line. Also,

concentrations of the purification pools and purification steps hardly

aligns with process development conditions or eventual manu-

facturing conditions. Thus, if the relevant developability considera-

tions are not accounted for the selection of a lead candidate is

subjective and might lead to problems downstream.

Given the vast space covered during the discovery phase it is not

possible to perform all the relevant experiments on potential candi-

dates. A synergy between in silico prediction and experimental stu-

dies has the potential to expand the search space computationally

and focus experimental efforts on relevant constructs with improved

developability parameters. However, there is a lack of relevant ex-

perimental data for a diverse set of antibodies to identify specific

structural features that predict salient parameters that will inform

developability.

Upstream process development is mainly interested in expres-

sion and efforts to increase the titer at harvest. Additional con-

sideration during upstream processes is to minimize posttranslational

modification (PTM) and impurities (host cell protein [HCP], lipase,

etc.) that might be produced as a byproduct. Factors that influence

successful downstream processes include metabolite consumption

and byproducts, amino acid and nutrient consumption, aeration,

agitation, and viability. With regard to computational analysis and

optimization of these factors, a critical question that remains un-

answered is the extent to which the DNA construct (plasmid) or the

protein sequence it encodes influence upstream processes. Cur-

rently, enough data exist to optimize protein sequence to minimize a

limited set of posttranslational modifications (glycosylation, deami-

dation, etc.). Other unanswered questions include: is it possible to

predict the upstream process outcome based on antibody DNA or

protein sequence? Is there a link between cellular consumptions and

the type of protein produced? Can HCP be modulated through lead

candidate selection or is it a function of production titer and cell

culture stress.

If PTMs, lipase levels, and HCPs are controlled upstream, it will

reduce the burden on downstream process development. If not, tools

need to be developed to address these impurities through down-

stream processes. Addressing these challenges during downstream

process development will require an entirely different set of tools

and considerations. For the removal of PTM variants, biophysical

differences between the main molecule and PTM variants can be

exploited to separate these impurities. Thus, a structural insight into

the PTM variants is required. The challenge is that it is not possible

to predict all possible variants and, even if possible, can any observed

or calculated difference be exploited to optimize a purification pro-

cess? Presence of lipases in the final drug product has remained

active even at sub‐parts per billion (ppb) levels. How these molecules

remain present through a series of purification steps is not com-

pletely understood. One possibility is that some lipases associate/

bind to the antibody (or other target proteins) and do not dissociate

through the purification process. If this is the case, some level of

thermodynamic analysis of the interaction between antibody/target

protein and lipase is required. Another challenge is that there is not a

complete set of characterized lipases that is present in Chinese

hamster ovary (CHO) cells. Knowledge of the sequence and structure

of these lipases will significantly transform our understanding of this

purification impurity. A similar set of considerations exist for clear-

ance of other HCPs. The diversity of these impurities and lack of

comprehensive characterization of the variants presents a challenge

for the field.

Additional consideration for downstream process optimization is

to define and better understand the principles that govern purifica-

tion modalities (chromatographic and non‐chromatographic). Process

development can be accelerated by minimizing the number of ex-

periments through computational modeling. The driving forces that

modulate protein retention on a chromatographic column are not

easily predicted by looking at the structure or biophysical properties

of the antibody. Drawing a correlation between structural properties

and its influence on binding and elute or flow‐through operating

conditions will be a significant advancement of the field. One lim-

itation is our inability to completely characterize aggregation. Efforts

to distill the types of aggregates generated and their structural fea-

tures will open the space for novel tools to be developed to address

these challenges. Beyond packed beds, non‐chromatographic pur-

ification methods have the potential to expand the current tools in

this field.

During formulation, the stability of the final drug substance is

critical for extending shelf life and potency. The molecular structure

can influence self‐association and aggregation under higher protein

concentration and as a function of excipients, buffer and pH condi-

tions. The influence of these parameters (excipients, buffer, and pH)

on protein stability, solubility, and aggregation is determined by the

structure and biophysical properties of the biological molecule.

Even though antibodies are structurally very similar, there is

significant diversity of the biophysical properties of most of the

molecules that have made it to different stages in clinical develop-

ment. In addition, there is an infinite number of possible permuta-

tions of antibodies possible with specificity toward different antigens.

The diverse possibility of properties makes predictive assessment of

antibody properties challenging. Further, the number of antibody

molecules that have undergone some level of clinical development is

a significantly limited subset of all the possible variants of antibodies

possible in nature. A third limitation to predicting biophysical

3990 | ROUSH ET AL.

 10970290, 2020, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bit.27520 by R

oyal D
anish L

ibrary, W
iley O

nline L
ibrary on [24/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



properties that influence process development is the diversity in

process development platforms and an even lower number of mo-

lecules that have been developed by each unit operation. Con-

solidation of data from different organizations and molecules can

improve the odds of a successful predictive too if the data is nor-

malized across platforms.

As more data becomes available through the formation of con-

sortiums and the development of novel molecules, there will be a

point where the generated data can be used to predict biologics

development. At this current state, the computational cost of build-

ing representative homology models, calculation of biophysical de-

scriptors, and analysis of the data to either understand or predict

experimental outcome is not a limiting factor. To make meaningful

correlation between the in silico biophysical calculation and experi-

mental outcome, both sets of data need to be standardized or nor-

malized. Normalizing experimental data can be challenging when

generated under different conditions as required for clinical devel-

opment. An alternative approach would be to specifically mutate

molecules to generate a diverse set of molecules that can be studied

under similar experimental conditions. Yet, as new predictive tools

are developed, testing the algorithms against a defined set of mole-

cules will be an effective way to benchmark the success of each

predictive tool. This will be an effective cross validation and an

iterative approach to determine progress within the field of pre-

dictive bioprocess development.

A comprehensive process predictive algorithm would start from

humanization, through sequence optimization, liability elimination,

plasmid design, expression and scale‐up, downstream purification

modality prediction, and formulation conditions. Experimentally, each

of these steps generate specific experimental data which are a

function of the molecular biophysical properties. Identifying the

molecular biophysical properties that give rise to these experimental

outcomes can guide experimental studies. These predictive guide-

lines can either be used to classify molecules into buckets (good vs.

bad) or to predict the exact experimental conditions required to

execute each unit operation. Other process attributes (e.g., iso-

therms, HCP:protein interactions, etc.) are a little more challenging

to predict, and these include residual clearance of HCP. Since dif-

ferent cell lines and expression conditions are required for each

upstream production, the quantity and types of HCPs can vary.

Predictive clearance of the different HCPs will require a complete

classification of all the types of HCPs present and their levels under

each expression conditions.

From lead selection to final formulation, computational biophy-

sical tools can be deployed to optimize the selection process, opti-

mize lead candidates, and accelerate the development process.

Significant time (years) and associated costs are incurred for moving

a candidate along to a given stage gate. Should the molecule fail to

proceed past that stage, the investment in time and resources is lost.

The development of tools that will facilitate the progression of a

molecule past each stage gate will save the stated financial cost and

will represent the true value of that computational tool. However,

the actual cost of developing these computational tools should the

data exist will be significantly less than the projected value. The

current limitation in producing such a tool is the associated cost of

generating relevant data that can be used to develop a predictive

platform.

2.2 | Mechanistic modeling—chromatography and
other general mechanistic models

Mechanistic models are typically utilized industrially at the unit op-

eration level and across all stages of development including as an

early stage activity (Figure 1). Mechanistic models exist for almost all

unit operations; however, the current development and im-

plementation level of mechanistic models varies strongly with the

specific unit operation. To mention a few, models based on funda-

mentals for membrane processes in general (Liderfelt & Royce, 2018;

van Reis & Zydney, 2007), some chromatographic applications

(Benner, Welsh, Rauscher, & Pollard, 2019; Hunt, Larsen, & Todd,

2017), and chemical/enzymatic reactions (Sejergaard et al., 2013) are

well established and broadly implemented in industry, while fer-

mentation processes are very (too?) complex to describe solely by

mechanistic approaches. Mechanistic modeling focus of the Third

Modeling Workshop was on various aspects of chromatographic unit

operations with contributions/discussions also covering reactions/

synthesis and fermentation.

At the Workshop, applications of mechanistic modeling of

chromatography was covered by three presentations (Figure 4). Ex-

amples of mechanistic chromatography modeling discussed at the

Workshop included incorporating models in typical industry work-

flows using high throughput scale‐down techniques and using models

F IGURE 4 Mapping mechanistic modeling to a range of

applications (adapted from GoSilico) [Color figure can be viewed at
wileyonlinelibrary.com]
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to supplement traditional DOE approaches. Other more novel ap-

plications included exploring Protein A (ProA) and ceramic hydro-

xyapatite (CHT) modalities as well as modeling multicomponent

displacement effects. One presentation discussed high throughput

methods to obtain necessary model parameters through plate based

screening or shallow bed chromatography with a focus on ProA af-

finity chromatography. Another presentation discussed an approach

to supplement a typical DOE statistical approach for cation exchange

chromatography by applying mechanistic modeling to better under-

stand the significance (or confirm insignificance) of factors not stu-

died in the DOE. A final presentation considered mechanistic models

for understanding frontal loading and multicomponent interactions

for CHT chromatography and used these models to demonstrate

separation of mAb monomer and dimer species.

For a fully mechanistic approach to modeling of chromatographic

unit operations, proper mathematical descriptions of fluid flow, mass

transport, and where appropriate adsorption isotherms are required.

This is generally established for ion‐exchange (Briskot et al., 2019;

Hahn et al., 2016; Rischawy et al., 2019), size‐exclusion chromato-

graphy/gel filtration (Hagel, 2011), and affinity chromatography

(Benner et al., 2019). However, a molecular level understanding of

the chromatographic surface and protein/surface interactions is not

yet available. Appropriate adsorption isotherms for reversed‐phase
(RP), hydrophobic interaction (HIC), and mixed‐mode (MM) chro-

matography are more challenging for proteins, for example, among

others due to lack of suitable mathematical description of protein

unfolding or conformational changes during operation with hydro-

phobic surfaces and in the presence of organic solvents. A possible

future opportunity for developing mechanistic isotherm models is to

combine these models with molecular models (see Figure 2) to obtain

a better description of protein/solute behavior and avidity effects,

which could extend applicability to new modalities, both new protein

formats (e.g., bispecifics, antibody‐drug conjugates, antibody frag-

ments, cytokines, etc.) as well as new‐therapeutic targets (e.g., cell

therapies, viruses, virus‐like particles, messenger RNA therapies, and

other new modalities). However, it was also suggested at the

Workshop to take a hybrid approach and combine machine learning

approaches for adsorption with mechanistic understanding/models

to obtain better models now for all modes of chromatography,

especially RP, HIC and MM.

Scale‐up is another example of well‐established mechanistic

models for chromatography (Benner et al., 2019; Carta & Jungbauer,

2020). This late stage activity is applied either through constant

linear or constant volumetric flow rate models. Workshop consensus

was that current approaches are well understood for modeling pur-

poses but additional challenges for implementation still exist (e.g.,

imperfect mixing, spatial inhomogeneity, varying flow‐paths, in-

creased/decreased hold‐up volumes). This late stage activity is ap-

plied either through constant linear or constant volumetric flow rate

models. The Workshop consensus was that current approaches work

satisfactorily.

Chemical and enzymatic reactions for protein modifications

(conjugations of PEG, fatty acids, Fc regions etc., amino acid

extensions/substitutions and others) are areas that have proven to

be well‐described and established by mechanistic models using var-

ious rate models (Sejergaard et al., 2013). A future extension of this

approach would be to develop general models for example, shelf life

and in‐use time for protein formulations as a predictive tool to

supplement or replace real‐time and accelerated stability studies.

Fermentation (possibly including large‐scale mixing) and other

complex systems are examples of unit operations where current

mechanistic models are insufficient to describe and predict the be-

havior. For these systems, machine learning approaches and/or sta-

tistical approaches involving PCA/PLS techniques may currently be

optimal, but attempts to provide more mechanistic understanding to

these systems are on‐going. A Workshop consensus was that the

future of modeling of complex systems as well as systems where

sufficient mechanistic description is missing would be to aim for

hybrid modeling approaches to increase process understanding. Re-

gardless of the modeling approach taken, everybody agreed that

comprehensive and good data is required, and the possibility of es-

tablishing common databases to the benefit of all and to improve

modeling work was discussed.

2.3 | Computational fluid dynamics

CFD is a specific type of mechanistic modeling and branch of fluid

mechanics that uses numerical analysis and data structures to ana-

lyze and solve problems involving fluid flows. Similar to mechanistic

models, CFD is commonly applied at the unit operation level as a

digital twin for process equipment (Figure 1).

CFD models are now ubiquitous in aerodynamic design. The last

two decades has seen an increased interest in the application of CFD

models to other industries including biotechnology processing. This is

partly in response to the development of sophisticated commercial

software packages that have lowered the barrier of entry for this

type of analysis, and most major pharmaceutical companies have now

established internal CFD capability and are broadly applying the

technology.

The session successfully motivated the value proposition for

CFD. The contributors provided numerous examples of how the in-

dustry is currently leveraging CFD and the close agreement with

experimental results that can be achieved. Agitated vessels continue

to be the primary application of CFD to biotechnology processing

with bioreactors and fermenters being an extension of these models

that include multiphase flow and potentially chemical reactions

(Dhanasekharan, Sanyal, Jain, & Haidari, 2005; Haringa et al., 2018;

LaRoche, 2005; Wutz et al., 2016). The success of CFD in predicting

mixing times, power input, and mass transfer coefficients (kLa) has

also led to its use for other unit operations including: centrifugation,

chromatography, ultrafiltration, membrane systems, microfiltration,

spray drying, and freeze drying.

Despite the ability to provide high resolution results, CFD is still

generally used to provide directional guidance for early stage activ-

ities or as supporting evidence. A lack of published industry‐accepted
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approaches for model development and validation often prevents

CFD from being used as primary data for later stage activities (e.g.,

mesh density, domain decomposition, turbulence models, population

balance, multiphase flow, non‐Newtonian liquids, coupling with me-

tabolic cell models, etc.). This is not a problem specific to CFD but

impedes development of strategies for improving current work pro-

cesses through modeling.

The FDA is actively investing in CFD and its Center for Devices

and Radiological Health (CDRH) has a Fluid Dynamics Laboratory

focused on problems involving fluid flow and the fluid interactions

with medical devices and the human body. There is also an FDA‐wide

working group on Modeling and Simulation, sponsored by the Office

of the Chief Scientist, which launched in 2017. There was general

agreement at the Workshop that we need a strategy to engage the

agency in our efforts and develop common standards for building and

utilizing CFD models. A small step in this direction proposed by the

group was to have industry practitioners from the Workshop group

develop and document a standard approach CFD mixing and model

validation.

2.4 | Plant simulation

Plant simulation was set as an overarching goal for modeling at the

Workshop. A number of considerations are required for im-

plementation of plant simulation with respect to timing, applications,

underlying tools, and restrictions. In transitioning from early stage

design to manufacturing (see Figure 1), an inherent multiscale ap-

proach is applied that requires the application of multiscale modeling.

Multiscale modeling is defined as the symbiosis between different

modeling complexities and disciplines to represent elements of a

system and thereby, the full system using in silico methods and tools.

The problems to be solved, whether in early stage design or manu-

facturing are the same, for example, process design, process under-

standing, process control, process monitoring, process optimization,

and process intensification to name a few. However, the constraints

associated with these problems differ based on the stage of the de-

sign, for example, where CQAs are specified and CPPs operating

windows (lower and upper bounds) are estimated, justified and fixed

for manufacturing, CQAs are set as process specifications and CPPs

are improved/optimized within their predefined operating window. In

the pharmaceutical industry (new) products are ultimately anchored

in a facility. A facility is defined as a system where multiple processes

are operating in parallel to support one or more core manufacturing

processes making a value‐added product. In contrast to a factory (or

plant), a single core process exists to make a value‐added product.

Pharmaceutical processes are typically batch and therefore, in-

herently dynamic. A challenge that can be transformed into an op-

portunity is how to probe the design space for new as well as existing

facilities to quantify the impact of design/retrofit decisions. To na-

vigate the complexity for modeling of a facility to feasibly probe,

analyze, evaluate and generate the best investment portfolio based

on the multiscale, the facility can be decomposed into different

scales: the facility (Scale 1), the individual processes (Scale 2) and the

unit operations in each process (Scale 3).

Figure 5 shows the symbiosis of the different models utilized for

facility (and supply chain) simulation. At the higher end of the scale,

Scale 1, production planning‐scheduling (PPS) is used to feasibly

probe the design/operating space and estimate expected outcomes

(reactive approach) and test ideas to evaluate beneficial outcomes/

synergies (proactive approach). However, the extent of the ex-

pectations that can be obtained are at the lower end of the scale,

F IGURE 5 Multiscale modeling overview and applicability [Color figure can be viewed at wileyonlinelibrary.com]
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Scales 2–3, where a combination of experiments and mechanistic/

hybrid models are used. For PPS, the models are of low fidelity (mass

balance models), however, solution complexity of the flowsheet

model requires the solution of a high number of equations subject to

constraints (superstructure optimization). Such problems are for-

mulated as a mixed integer nonlinear programming (MI[N]LP) pro-

blem because of the decision making (e.g., equipment selection) uses

integer variables and the (non‐) linear unit operations models

(Bertran et al., 2017). This problem can either be solved using opti-

mization or discrete event algorithms or a combination of both

(Harjunkoski et al., 2014).

Using PPS the following analyses can be performed either a

priori (early stage design) or posteriori (manufacturing) or a combi-

nation of both to evaluate technology transfer and synergies/sym-

biosis across the value chain. PPS allows the solution of both the

planning problem, that is, when to produce what, how much to pro-

duce, and the sequence of what to produce and the scheduling pro-

blem, that is, how to produce what in a favorable time subject to

manufacturing constraints. Examples of analyses are faster product‐
process designs across a given governance structure, minimization of

variables/full manufacturing costs, tact (cycle) time, raw material

consumption, and supply chain design/optimization. It should be

noted that these minimizations can be defined as reactive because

they are classical optimization problems and normally existing ex-

perience and data are available. However, the identification of pro-

cess limitations and bottlenecks, and identification of how to

mitigate/remove them while minimizing reactive improvements are

also of importance. These minimizations/maximizations (formulated

as optimization problems) can be defined as proactive improvements.

In exploring proactive improvements using in silico methods for

screening, ranking, and selecting feasible, implementable ideas are of

importance. As an example, for n feasible identified improvement

ideas, a total of n! can be explored for order of implementation, that

is, 1 idea = 1 (1!), 2 = 2 (!), 3 = 6 (3!), 5 = 120 (5!) and 9 = 362,880 (9!).

How to select which ideas for investment and what should be the

screening and ranking criteria? Or consider an additional constraint

where funding is available now but not later in a given project life

cycle: which additional ideas should be selected out of the total set?

Here, risk‐based approaches need to also be incorporated into PPS

and mechanistic/hybrid models to account for both uncertainties and

sensitivities.

The exploration of synergistic effects, whether positive, negative,

or neutral, between the different processes within a facility must be

explored for quantification of requirements of auxiliary processes

(utility system flowsheet design, size/volume/capacity, location etc.),

topological selection (centralized/distributed/de‐centralized) and

supply/demand of raw materials (e.g., bulk material to produce elu-

tion solvents that then become raw materials for the core manu-

facturing API process). The auxiliary processes are of importance

because of the approach to their design and influence on the core

manufacturing API process. In terms of design, consideration of si-

multaneous or hierarchal process design should be performed. Spe-

cifically, should facility design‐simulation be performed to

simultaneously capture synergistic effects on, for example, capacity,

to design the auxiliary process or should the core process be de-

signed first, and then auxiliary processes designed around it. A re-

commendation would be a hybrid approach where hierarchal process

design is performed first followed by simultaneous design for re-

finement. New concepts for flexible process design can be explored,

for example, modular design (Baldea, Edgar, Stanley, & Kiss, 2017).

The PPS approach allows the exploration of design space discretely

for modular design as a function of, for example, numbering up

(Bieringer et al., 2016). Discrete sizes are considered because unit

operations typically have finite sizes that can be converted into au-

tonomous modules that can be utilized as plug and play. Using an

optimization‐based approach for PPS (e.g., MILP formulation) m

number of modules (autonomous fermenters, tanks, etc.) can be es-

timated for discrete step changes in ensuring that market demand for

a given product can always be met.

From an industrial perspective another problem of equal con-

sideration besides design is retrofit, since API manufacturing pro-

cesses already exists, that is, whether to produce at pilot or an

existing facility scale. The question to consider is how a new process

can exist with minimal challenges in an existing facility and if so, what

process changes are required? Again, a hybrid approach is re-

commended using the existing facility simulation model, and the

retrofit problem for a new product can be studied and evaluated

keeping the auxiliary processes fixed to estimate current change

requirements. These requirements that are then tested as ideas for

anchoring the project portfolio (both short and long‐term) for

transforming the current, existing process into the future process via

retrofit. Here Scales 2–3 and therefore, mechanistic modeling is of

importance to confirm what is expected to be realized.

2.5 | Open Challenges session

Additional aspects, challenges, and opportunities of the four major

topics and others were addressed at the Open Challenge session.

Many opportunities in modeling exist at the interface of the tradi-

tional modeling areas or are a hybrid of various modeling techniques.

The Open Challenges session (another new session at the Workshop)

was specifically designed to identify areas where tools need to be

developed to address complex modeling challenges that transcend

multiple areas. The majority of the session focused on flexible ap-

proaches and the development of hybrid models, including Artificial

Neural Networks (ANN) and the extension of models to optimization

of molecular design via development of rules to avoid key primary

liabilities.

One specific application was a combination of process modeling

and equipment characterization for a lyophilization process. Al-

though one could consider lyophilization as a relatively mature unit

operation, it was noted that there is often an extended lag in time

from publication of key results and development of a process model.

One potential origin of the lag in time is lack of standardization of

equipment and experimental approaches in the research field.
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Additional opportunities were identified to combine the existing

model with other modeling efforts (e.g., CFD for material/heat

transfer). Although the model required some lab scale verification of

heat transfer coefficients, it was quite useful since it contained a

web‐based interface to allow for utilization by a researcher who was

not a subject matter expert (SME) in the specific field of lyophiliza-

tion. This case study (as well as other papers in the session on first

principles chromatography modeling detailed below) are also ex-

cellent examples of some of the challenges associated with deploying

models to a wider user community, where there is the potential to

further realize the return on investment for the model development.

Specifically, the end‐user should be aware of the limitations on the

interpretation of the simulation results. For example, if a hybrid

model is developed with a specific range of parameters (e.g., cake

height for the lyophilization system), then the inputs and results may

need to be constrained within the model algorithm to specific ranges

for both the inputs and outputs of the model. This approach could

reduce the risk for misinterpretation or misapplication of the model.

Examples were provided for the current state of chromato-

graphy modeling where the technology and algorithms exist (e.g.,

Chromatographic Analysis and Design Toolkit [CADET]; Leweke &

von Lieres, 2018; GoSilico [Karlsruhe, Germany]) and offer a range

and combination of models (e.g., multistate steric mass action [SMA],

various transport models, multiple unit‐operations, including col-

umns, tanks, and other parts such as tubes, valves, detectors, etc.)

and allow the user to select the most appropriate tool for the specific

application. These tools also exercise the option to model a range of

outcomes for chromatography based on Bayesian or Markov Chain

Monte Carlo (MCMC) approaches. One of the challenges in deploying

these tools is that a SME is required to gather the inputs, interpret

the results, and ensure the appropriate selection of the specific tools,

see Figure 2.

Opportunities certainly exist for the development of hybrid

models, which can exist in multiple forms including a combination of

empirical and mechanistic approaches. The combination of mechan-

istic and statistical models is currently challenging since this ap-

proach requires large amount of data for parameters (potentially 18

for SMA and pH in an empirical model) which are not readily avail-

able to the model developers. Once developed, these approaches

could be used to predict key parameters for chromatography

breakthrough similar to CFD power number estimation and be ap-

plied with limited experimental data from breakthrough and iso-

therms to predict elution. Other forms of hybrid models include

combinations of various forms of mechanistic models, mixture of

atomistic and coarse grain molecular biophysics, combination of CFD

flow patterns, and SMA. It is important to note that empirical models

can also exist in multiple forms (e.g., lumped kinetic model, isotherm

model, etc.) Hence, it is critical when referencing hybrid models to be

specific in the approach and goal for the model to ensure lack of

ambiguity. One key outcome of the Workshop was that a gap exists

in terminology for modeling including the definition of scale and

types of hybrid models—a gap that needs to be addressed by the

community.

Another key opportunity for modeling is the potential applica-

tion of machine learning. However, this is currently limited by the

size of high‐quality data sets and the ability to directly compare the

various modeling approaches. To overcome these challenges, one key

recommendation at the Workshop is the definition of Good Modeling

Practice (such as utilization of consistent approaches for Uncertainty

Quantification) via definition of what is an acceptable variance,

characterization of output from Bayesian assessments, checks for

correlated variables, degrees of freedom, under/over‐specified sys-

tems, and so forth. In addition to consistency of metrics in Good

Modeling Practice, incorporation of a standard set of conditions or

systems (e.g., NIST mAb) in the various modeling approaches would

be extremely beneficial to advance the modeling field since it can

provide objective measures of algorithm efficiency and assess gaps

amongst the various modeling approaches. One other area of dis-

cussion was the significant value of access to high quality/diverse

data sets. One approach could be to develop a structure to amalga-

mate existing data sets into structured data to support modeling (e.g.,

research project through a consortium) including black box models.

Some examples could include biophysical properties of proteins and

protein/protein complexes, protein/ligand complexes, chromato-

graphic retention data for a wide range of molecular types and li-

gands and simulations data acquired for key model systems over a

range of parameterization). This approach could lead to a significant

advancement in molecular‐scale perspective, provide a reference

point and a basis benchmarking for future modeling activities.

To implement this structure an approach to address Intellectual

Property (IP) concerns and data integrity would need to be devel-

oped. Input and acceptance by regulatory bodies (within companies

and at health authorities) in the context of International Conference

on Harmonization Guidelines, either existing or in development (e.g.,

ICH Guidelines Q8–11) (ICH Q10: Pharmaceutical quality system,

2008; ICH Q11: Development & manufacture of drug substances

(chemical entities & biotechnological/biological entities), 2012; ICH

Q8(R2): Pharmaceutical development, 2009; ICH Q9: Quality risk

management, 2005) is essential.

3 | FUTURE STATE

As a result of presentations and discussions, the group defined sce-

narios and approaches for the desired future state of modeling.

3.1 | Interconnectivity

In an ideal future state of modeling in Chemistry, Manufacturing, and

Controls (CMC), the various areas of modeling that have been illu-

strated in the above sections of this report will be interconnected.

This is most likely achieved by an approach that is called multiscale

modeling (MSM). MSM describes an approach where physics‐based
models describe a process at different scales from molecular models

to meso‐ and macro‐scale models with decreasing levels of
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complexity, but on increasing length and time scales. At the macro-

scale, many of the more detailed models should be combined as

simplified versions. Figure 6 aims to describe the concept of multi-

scale modeling. Models can be categorized along a scale of de-

creasing level of detail from atomistic, molecular, micro–meso–macro

scales, CFD, and plant simulation/scheduling. However, depending on

the task at hand whether it is process characterization or batch

scheduling, different levels of detail may be required. The concept of

multiscale modeling stipulates that parameters defined at high level

of detail will be passed on to the next lower level of detail model, so

that a high‐detail level model feeds into a lower level of detail. This

approach will ensure that models are connected and prevent models

be established from scratch again, just because a single parameter

needed to be adjusted. Furthermore, changes to the model at a

higher‐detail level could easily be transferred to the model at the

larger scale. Obviously, this may as well work in the opposite

direction.

As an example, the development of a chromatography process

may require detailed understanding of how a particular antibody

interacts under different conditions with a particular chromato-

graphy resin. For this purpose, the establishment of a molecular

model may be appropriate, but to characterize various other para-

meters, like flow rate and length of wash, some detailed molecular

parameters may be lumped together into a charge parameter that is

utilized in an SMA‐type of model. Thus, only the lumped parameter

will be passed on, but ensure that the connection between the

models is kept. Another example is the utilization of quantitative

structure–activity relationship models to select operating conditions

(e.g., resin, pH) to evaluate in high‐throughput screening for the en-

tire process (orthogonal selectivity). These models can be developed

using computational biophysics and applied to facilitate mechanistic

modeling and effectively span both modeling areas synergistically

(see also Opportunities in Figure 7). For the plant simulation model,

the only parameters that will be passed on from the SMA‐type of

model are for each time dependent activity, the duration and the

material flow that are used. Lastly, the top right corner of Figure 6

displays that while the level of detail mostly transcends unit opera-

tions, the different unit operation models will be connected together

to create a unified model for a whole process, and in a facility model

different process models are operated to schedule production.

It is crucial for this approach, though, that information gained

and parameters calculated are and can be passed on to the next

model. As an example, one may consider a molecular assessment

probing a variety of things such as charge distribution, hydro-

phobicity, or patches thereof, chemical stability of charged residues.

The parameters that describe this model should then be passed on

not only to inform the developability of the molecule but also to be

used as initial starting points for informing models on the next scale.

For example, parameters for charge may be lumped together and

utilized as charge parameters in mechanistic chromatography mod-

els. Likewise, a detailed CFD model of the flow‐through in a chro-

matography column will be reduced to a handful of one‐dimensional

flow distributions that can in turn be used in mechanistic chroma-

tography models.
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F IGURE 6 Overview of interconnected multiscale models (adapted from Cavallotti & Salvalaglio, 2012) [Color figure can be viewed at
wileyonlinelibrary.com]
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F IGURE 7 Current state of modeling areas and gaps/investments required to achieve future state (Figure 1). Green—models are sufficiently
developed to support implementation now. Yellow—gaps identified that require modest investments to address before implementation (2–5
years). In some specific cases, computational limitations may currently exist which impact deployment. Gray— opportunities for exploration or

significant gaps required to achieve realization, for example, mechanistic modeling of fermentation/cell culture (5–10 years) or may not be
scientifically feasible (initial assessment required). Early stage indicates models appropriate for supporting first‐in‐human studies or
developmental studies. Late stage indicates quantitative models potentially applicable for biologics licensing applications [Color figure can be
viewed at wileyonlinelibrary.com]
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3.2 | Usability

Apart from the ability to pass on physical parameters, in the future

state there will be platforms available that facilitate this inter-

connection. A future computer tool will integrate different modeling

approaches and facilitate the integration of the various modeling

techniques described. Currently many tools are custom made, re-

quire in depth expert modeling knowledge, and are focused on only

one aspect of modeling. As mentioned in the opening section, al-

though these models were developed based on proteins, the appli-

cations and approaches can be applied to new biological formats (e.g.,

conjugates, virus‐like particles or virus production for gene therapy)

since the same principles and parametric approach is applicable. In

the future state the computational tools will be simple enough to use

that a competent process engineer is capable of using and applying

those tools without expert knowledge in programming or mathe-

matics, but with proper understanding of model limitations, and so

forth. To achieve this future state, additional investments in curricula

at universities and industry may be required to ensure appropriate

knowledge of tool development and implementation including con-

textualization of results.

3.3 | Standardization

Lastly, the modeling approaches will be standardized. Currently,

there are multiple approaches at the mechanistic or meso‐scale level,

and they are using different but similar parameters to describe si-

milar phenomena. This makes it difficult to move between modeling

approaches as each of them may require a different set of calibration

experiments. A similar problem occurs with raw materials. Ionic ca-

pacities, binding capacities, and/or porosities as examples are speci-

fied on certificates of analysis (CoAs) in many ways by

chromatographic resin vendors and determined by as many methods,

resulting in the need to prepare cumbersome calibration experiments

before a model may be formulated. In the future state, the vendors of

raw materials will supply the parameters required for their compo-

nents and similarly the suppliers of equipment will supply pre-

formulated models that can be used by the process engineer,

including a digital twin (e.g., CFD model development). Not having to

spend their efforts on characterizing the equipment and raw mate-

rials, they can focus on developing the process. To achieve this state,

standardization of requirements, reference conditions (for evaluation

of performance) and versioning will need to be deployed. This ap-

proach is essential to address the ability to utilize this information for

regulatory filings and to advance the modeling fields.

To achieve the Future State of In Silico Development, it is im-

portant to reflect on the current state and existing gaps. This is done

in Figure 7 with color coding of the different stages of development

of the various modeling tools and timing from Figure 1. Prospective

investments to address the opportunities identified (gray shading)

are required to transition from the current to the envisioned future

state.
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APPENDIX: AGENDA FOR THIRD MODELING

WORKSHOP

Third Modeling Workshop Agenda, Day 1 (May 07, 2019)

Topic Presenter

Mechanistic modeling Arne Staby/John Welsh

MAGPIE—Algorithmic analyzation

of bioprocess data

Tobias Grosskopf (Roche)

Computer‐aided nondistributed

modeling of industrial

fermentation process for

process understanding,

optimization, monitoring, and

control

Deenesh Babi (Novo

Nordisk)

Model‐based development of a

conjugation step

Ernst Broberg Hansen

(Novo Nordisk)

Digitalizing biopharma: Application

of good modeling practice for

industrial chromatography

Gang Wang (Boehringer

Ingelheim)

Understanding the impact of scale

and resin characteristics on

Protein A chromatography

elution profiles using

mechanistic modeling

Steve Benner (Merck &

Co., Inc.,

Kenilworth, NJ)

Developing a mechanistic

chromatography model to

perform a simulated design of

experiments (DOE) study

Mark Fedesco

(Genentech)

Modeling displacement effects in

purification of monoclonal

antibodies by frontal analysis

and overloaded gradient elution

chromatography

Giorgio Carta (Univ. of

Virginia)

Mechanistic modeling roundtable

discussion

Arne Staby/John Welsh

Computational fluid dynamics Stephen Hunt and

Bob Todd

Insight from CFD snapshots inform

experimental design

Henrik Marke (Novo

Nordisk)

CFD challenges and opportunities in

pharmaceutical industry

Matt Flamm (Merck & Co.,

Inc., Kenilworth, NJ)

Making large scale processes

transparent—the application of

cfd and classical engineering

approaches to mitigate risk

during cell culture process

transfer

Thomas Wucherpfennig

(Boehringer

Ingelheim)

CFD: Total cost of ownership Stephen Hunt (KBI

Biopharma)

CFD roundtable discussion Stephen Hunt and

Bob Todd
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Third Modeling Workshop Agenda, Day 2 (May 8, 2019)

Topic Presenter

Plant simulation Ernst Broberg Hansen

Run‐rate and capacity with VirtECS plant simulation software Ben Smith (Amgen)

Transforming biopharmaceutical manufacturing with plant simulation and scheduling Larry Sun (Amgen)

Multiscale in silico driven product and process development Philipp Ernst (Bayer AG)

Computer‐aided flowsheet simulation of industrial pharmaceutical processes for identification of

improvement‐optimization

Marcel Stenvang (Novo Nordisk)

Advanced models and the modeling lifecycle in biopharma process Pablo Rolandi (Amgen)

Plant simulation roundtable Ernst Broberg Hansen

Open challenge David Roush and Jan Griesbach

A new approach to lyophilization process development and transfer enabled by equipment characterization

and process modeling

Fabrice Schlegel (Amgen)

Current capabilities and future development of the CADET platform for chromatography modeling Eric von Lieres (Research Centre

Jülich)

Modeling of ion exchange chromatography: from mechanistic to empirical and back Tobias Hahn (KIT)

Leveraging mechanistic modeling with a black box: neural network estimation of chromatographic

parameters

Abraham Lenhoff (Univ. of

Delaware)

Chemical and physical determinants of drug‐like monoclonal antibodies Pete Tessier (Univ. of Michigan)

Open challenge roundtable David Roush and Jan Griesbach

Third Modeling Workshop Agenda, Day 3 (May 9, 2019)

Topic Presenter

Opening remarks Organizing Committee

Molecular modeling Francis Insaidoo

Molecular modeling overview of session topics/themes Francis Insaidoo

A quasichemical perspective of protein solution thermodynamics Dilip Asthagiri (Rice University)

Pattern formation on resin surfaces in multimodal chromatography: Quantification of ligand

aggregation and development of QSAR descriptions

Steve Cramer (RPI)

Mesoscale Model for the self‐assembly and cross‐linking dynamics of HPV virus‐like particles Oleksandr Zavalov (Merck & Co., Inc.,

Kenilworth, NJ)

Using data for in silico prediction of monoclonal antibody characteristics Jasper Lin (Genentech)

Roundtable discussion molecular modeling Francis Insaidoo

Abbreviation: QSAR, quantitative structure–activity relationship.
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